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This work deals with the effect of gravity modulation on the onset of convection in a horizontal porous
layer subjected to an adverse temperature gradient. Low amplitude gravity modulations are considered.
The analysis is linear and specific attention is paid to the boundary effects of Brinkman’s model and
anisotropies of the porous medium in permeability and thermal conductivity. A Floquet analysis is
applied and critical values of the parameters are found analytically using stability charts. The emergence
of instability through the synchronous and subharmonic modes, transition between them and their
dependence discussed for physically realistic values of control parameters. The findings of this analysis
may be useful in controlling convective plumes during fabrication which develop into freckles in the
ground grown crystals.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

The knowledge of thermal convection in mushy layers of mixed
solid and liquid phases has become increasingly important during
the fabrication of single crystals required by the present day tech-
nology. There are significant differences in the compositional
homogeneity and structural perfection between space grown and
ground grown crystals. The unfavourable buoyancy driven
convection, sedimentation and hydrostatic pressure in the process
of crystal growth can be suppressed under microgravity environ-
ment. A knowledge of these allows us to understand the reason
behind crystal growth related defect formation and determine the
best way to produce high quality crystals on the ground. Several
ways are being adopted to have a control on the buoyancy driven
flow like reduced gravity level, rotation, agitation techniques, etc.
The growing volume of work devoted to this area is well docu-
mented by the most recent review of Razi et al. [1].

The Rayleigh–Benard problem in a porous domain with variable
gravity effects has been studied by many researchers (see for
example Alex and Patil [2] and Saravanan and Kandaswamy [3]).
Time-dependant body forces may occur in systems, with density
gradients, subjected to vibrations. The influence on thermal
convection depends on the orientation of the fluctuating body force
).
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with respect to the thermal stratification. This type of body force
can even alter the stable distribution of a stratifying agency under
constant gravity environment and introduce parametric resonance
under suitable conditions. Much work has been done in vertically
modulated pure fluid layers with constant vertical stratification,
i.e., modulated Rayleigh–Benard convection. This type of modula-
tion in gravity may be realized by vertically oscillating a fluid layer
in a constant gravitational field. Gershuni et al. [4] and Gresho and
Sani [5] were the first to initiate the study of the effect of gravity
modulation in a fluid layer. But the study of this aspect in a porous
medium is comparatively of recent origin.

Malashetty and Padmavathi [6] asymptotically analyzed the
linear stability of a horizontal fluid saturated porous layer heated
from below for the case of low amplitude gravity modulation. They
found that the low frequency gravity modulation significantly
affects the system for both Darcy and Brinkman models. Bardan and
Mojtabi [7] studied numerically and analytically convection in
a rectangular fluid saturated porous cavity heated from below and
subjected to high frequency vibration. They found that increasing
the vibration amplitude increases critical Rayleigh number to large
values and may even create subcritical solutions. Recently
Govender [8,9] has made stability analyses to investigate the effect
of low amplitude gravity modulation on convection in a homoge-
neous porous layer heated from below. By plotting Mathieu’s
stability charts he could predict the actual transition point from
synchronous to subharmonic mode. The onset of thermocapillary
convection in a fluid saturated porous medium subjected to vertical
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Nomenclature

b* vibration amplitude
Da Darcy number, Kz*=H2

*

Fr Froude number, l2
z*=ðg*H3

* Þ
g* gravitational acceleration
H* the height of the porous layer
K* permeability tensor, Kx*ði iþ j jÞ þ Kz*ðk kÞ
L* the length of the porous layer
p pressure
Pr Prandtl number, n*=lz*

R Rayleigh number, b*DTCg*Kz*H*=n*lz*

Rv vibrational Rayleigh number
s wavenumber
T temperature, ðT* � TCÞ=ðTH � TCÞ
t* time
TC cold wall temperature
TH hot wall temperature
u horizontal x component of the filtration velocity
v horizontal y component of the filtration velocity
V filtration velocity vector, uiþ vjþwk
V1 anisotropy modified velocity vector,

ðu=xÞiþ ðv=xÞjþwk
Va Vadasz number, 4Pr=Da
w vertical z component of the filtration velocity
W* the width of the layer
x horizontal length coordinate
y horizontal width coordinate
z vertical coordinate

Greek symbols
a a parameter related to the wavenumber, s2=p2

b* thermal expansion coefficient
g Va=p2

d kFrU2

DTC characteristic temperature difference
k b*=H*

l* thermal diffusivity tensor, lx*ði iþ j jÞ þ lz*k k
m* dynamic viscosity
me* effective dynamic viscosity
m me*=m*

n* kinematic viscosity
x mechanical anisotropy parameter, Kx*=Kz*

h thermal anisotropy parameter, lx*=lz*

2 scaled exponent, equals s=
ffiffiffiffiffiffiffi
�a
p

r fluid density
s Mathieu exponent
f porosity
u* vibration frequency
U scaled vibration frequency, u*H2

*=lz*

Subscripts

* dimensional quantity
c characteristic
cr critical
C cold wall
H hot wall
o unmodulated quantity
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vibration was examined by Zenkovskaya [10] using the averaging
method and it was concluded that high frequency vibration stabi-
lizes as well as destabilizes the no-flow state. He found that the
horizontal vibration destabilizes the system and augments
convection in zero gravity and microgravity. Also he concluded that
the effect of modulation disappears for high frequencies.

The study of convection in porous media of anisotropic nature
has become crucial due to its inherent occurrence in natural and
artificial porous structures. The non-uniformities may be attributed
to either changes in permeability or thermal conductivity or both of
the porous matrix. Most of the earlier studies have used the clas-
sical Darcy’s law which is valid for flow through regular structures
over the whole spectrum of the porosity. Hence this model is silent
about the flow structure near the bounding surfaces. Malashetty
et al. [11] studied the effect of thermal modulation on the onset of
convection in a horizontal, anisotropic porous layer saturated with
a viscoelastic fluid. Darcy’s law with viscoelastic correction was
used to describe the fluid motion. The stability of the system
characterized by a Rayleigh number was calculated as a function of
anisotropy parameters, viscoelastic parameters and frequency of
modulation. Govender [12] investigated natural convection in an
anisotropic porous layer subjected to centrifugal body forces. He
found that the convection is stabilized when the thermal anisot-
ropy ratio, which is a function of mechanical and thermal anisot-
ropy parameters, is increased in magnitude.

The objective of the current work is to extend the use of
Mathieu’s stability charts for studying the onset of modulated
Rayleigh–Benard convection in a more general porous medium. We
employ Brinkman’s equation to model the momentum balance. It is
appropriate for a highly porous medium and when the Darcy
number is not small and takes care of the boundary effects. In
addition the porous domain is assumed to be anisotropic in
mechanical as well as thermal sense. In particular we focus on
a transversely anisotropic medium in which the principal axes of
permeability are aligned with the coordinate frame.

2. Problem formulation

A shallow and sparsely packed anisotropic horizontal fluid
saturated porous layer confined between the surfaces z* ¼ 0 and
z* ¼ H* is considered. The layer is heated from below and is sub-
jected to vibration in a direction parallel to the gravitational field.
Brinkman’s law is used and the convective terms are neglected as
we deal with a quiescent initial state. The equations governing the
above system under the assumption of the Boussinesq approxi-
mation are

V*,V* ¼ 0 (1)

rc*

f

vV*

vt*
¼ � V*p* �

m*

K*

V* þ me* V2
*V* � ðr* � rc*Þ

�
�

g* þ b*u2
* sinðu*t*Þ

�
k ð2Þ

vT*

vt*
þ V*$V*T* ¼ V*$ðl*$V*T*Þ: (3)

where K*, l*, V , T, p and f represent the permeability, thermal
diffusivity, filtration velocity, temperature, reduced pressure and
porosity, respectively. We use the following transformation

ðu*; v*;w*Þ ¼
lz*

H*
ðu; v;wÞ; p* ¼ ðm*lz*=Kz*Þp;

ðT* � TCÞ ¼ DTcT ¼ ðTH � TCÞT ; ðx*; y*; z*Þ ¼ H*ðx; y; zÞ;

t* ¼
H2

*

lz*
ðtÞ; r* ¼ rc*ð1� b*DTcTÞ;
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m* ¼ n*rc*; R ¼ b*DTcg*Kz*H*=n*lz:
and express Eqs. (1)–(3) in non-dimensional form as

V$V ¼ 0 (4)

1
Va

vV
vt
þ V1 � DaV2V ¼ �Vpþ R½1þ d sinðUtÞ�Tk (5)

vT
vt
þ V$VT ¼

 
hV2

H þ
v2

vz2

!
T (6)

where V2
Hhv2=vx2 þ v2=vy2 is the horizontal Laplacian operator. In

Eq. (5) U ¼ u*H2
*=lz represents the scaled frequency and

d ¼ kFrU2 represents the amplitude, where k ¼ b*=H* and
Fr ¼ l2

z*=ðg*H3
* Þ, the modified Froude number. The parameter Va is

the Vadasz number and is defined as

Va ¼ fPr
Da

(7)

where Pr ¼ n*=lz* is the Prandtl number and Da ¼ me*Kz*=m*H2
*

the Darcy number. The boundaries are assumed to be flat and
stress-free, that is w ¼ 0 and ðvu=vzÞ ¼ ðvv=vzÞ ¼ 0. The temper-
ature boundary conditions are T¼ 1 at z¼ 0 and T¼ 0 at z¼ 1.

Eqs. (4)–(6) together with the corresponding boundary condi-
tions accept a basic state given by TB¼ 1� z and VB¼ 0. We assume
small perturbations around the basic solution in the form V ¼ VB þ
V 0 , p ¼ pB þ p0 and T ¼ TB þ T 0. Substituting these in Eqs. (4)–(6),
eliminating the pressure by operating curl twice in Eq. (5) and
projecting it on the z-direction we obtain the following equations
governing the perturbations as

�
1

Va
v

vt

�
V2w0 þ V2

Hw0 þ 1
x

v2w0

vz2 � DaV2V2w0

� R½1þ d sinðUtÞ�V2
HT 0 ¼ 0 ð8Þ

"
v

vt
�
 

hV2
H þ

v2

vz2

!#
T 0 �w0 ¼ 0 (9)

where w0 is the vertical component of the perturbed velocity. The
appropriate boundary conditions are w0 ¼ ðv2w0=vz2Þ ¼ T 0 ¼ 0 at
z ¼ 0 and z ¼ 1. Eliminating w0 from Eqs. (8) and (9) we obtain
a single equation

�
1

Va
v

vt

�
V2

"
v

vt
�
 

hV2
H þ

v2

vz2

!#
T 0 þV2

H

"
v

vt
�
 

hV2
H þ

v2

vz2

!#
T 0

þ 1
x

v2

vz2

"
v

vt
�
 

hV2
H þ

v2

vz2

!#
T 0 �DaV2V2

"
v

vt
�
 

hV2
H þ

v2

vz2

!#

� T 0 � R½1þ d sinðUtÞ�V2
HT 0 ¼ 0 ð10Þ

We assume a normal mode expansion in the x- and y-direction
and time-dependent amplitude qðtÞ,

T 0 ¼ qðtÞexp
�
i
�
sxxþ syy

	

sinðpzÞ (11)

where s2 ¼ s2
x þ s2

y . Substituting Eq. (11) into the Eq. (10) we arrive
at

d2q

dt2 þ 2p
dq

dt
� FðaÞg

h�
~R� ~R0

	
þ ~Rd sinðUtÞ

i
q ¼ 0; (12)
where 2p ¼ p2½haþ 1þ gðððxaþ 1Þ=xðaþ 1ÞÞ þ Da p2ðaþ 1ÞÞ�,
FðaÞ ¼ ðp4a=ðaþ 1ÞÞ, a ¼ s2=p2; g ¼ Va=p2, ~R ¼ R=p2 and ~R0
is the unmodulated Rayleigh number defined as
~R0 ¼ ððaþ 1Þ2=aÞ½ððxaþ 1Þðhaþ 1Þ=xðaþ 1Þ2Þ þ Dap2ðhaþ 1Þ�.
Using the transformation t ¼ ðp=2� 2sÞ=U, Eq. (12) can be
expressed in the canonical form of Mathieu’s equation (see McLa-
chlan [13]) as

d2X
ds2 þ ½a� 2q cosð2sÞ�X ¼ 0 (13)

The solution to the above equation is of the form X ¼ qðsÞess

where qðsÞ is a periodic function with a period of p or 2p and s is
a characteristic exponent which is a complex number and is
a function of a and q. Here the definitions for a, q and s are obtained
upon transforming Eq. (12) to the canonical form and are given by

2ffiffiffiffiffiffiffi
�a
p ¼ Uh

FðaÞgð~R� zÞ
i1=2

(14)

1
2

q ¼ FðaÞg~Rd

U2
¼ FðaÞg~RkFr (15)

s ¼ �2p=U (16)

where z is a parameter defined as

z ¼ �~R0

�
haþ 1� g

�
ðxaþ 1Þ
xðaþ 1Þ þ Dap2ðaþ 1Þ

��2

4gðaþ 1Þ
�
ðxaþ 1Þðhaþ 1Þ

xðaþ 1Þ2
þ Dap2ðaþ 1Þ

� (17)

3. Solution procedure

The characteristic exponent with the largest ReðsÞ determines
the stability of the system. The disturbances amplify if ReðsÞ > 0
and decay if ReðsÞ < 0. If ReðsÞ ¼ 0, the solution to Eq. (13) is
defined in terms of Mathieu’s functions cen(a,q) and sem(a,q),
n¼ 0,1,2,., m¼ 1,2,. (see [13]). Fig. 1(a) shows the plots of ce0, se1

and ce1 which separate the stable and unstable solutions. If the
other Mathieu’s functions for n,m> 1 are superimposed in Fig. 1(a)
one would observe that the regions separated by Mathieu’s func-
tions in the a–q plane are alternately stable and unstable. For our
analysis we consider only small values of q and hence the analysis
around the lower order functions ce0, se1 and ce1 is sufficient. The
region below curve ce0 and the region enclosed between curves se1

and ce1 correspond to the unstable zones. The narrow region
between curves ce0 and se1 represents the stable zone. The regions
enclosed by cen with even indices (i.e. n¼ 0,2,4,6,.) yield
synchronous solutions and those enclosed by cen with odd indices
(i.e. n¼ 1,3,5,7,.) yield subharmonic solutions thus implying that
the a–q plane consists of alternating regions of synchronous and
subharmonic solutions.

Suppose fy1; y2g constitute a fundamental system of Eq. (13).
We used the relation coshðspÞ ¼ y1ðpÞ and the conditions y1ð0Þ ¼
1; y01ð0Þ ¼ 0; y2ð0Þ ¼ 0; y02ð0Þ ¼ 1 in the case of synchronous
solutions and the relation coshð2spÞ ¼ ðy1ðpÞ þ y02ðpÞÞ=2 and the
conditions y1ð�pÞ ¼ y02ð�pÞ ¼ 1; y2ð�pÞ ¼ y01ð�pÞ ¼ 0 in the
case of subharmonic solutions to calculate s. There are solutions to
Eq. (13) for a< 0 also and q may be replaced by –q with no effect on
the solution.

For a porous medium heated from below, an inverted pendulum
analogue, the numerical values for a are less than zero and are
defined by Eq. (14). A chart of q/2 against 2=

ffiffiffiffiffiffiffi
�a
p

, for various values



Fig. 1. Stable regions as a function of a and q. (a) Lower order Mathieu’s functions depicting stable and unstable regions, (b) stability chart for Mathieu’s equation for various values
of 2.
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of the modified characteristic exponent 2 ¼ s=
ffiffiffiffiffiffiffi
�a
p

, is shown in
Fig. 1(b) for small values of q. In Fig. 1(b), 2 ¼ 0 refers to Mathieu’s
functions depicted by the curves for ce0 and se1. We may now
present a relation for the characteristic Rayleigh number in terms
of the newly defined parameter 2, by substituting 2 ¼ s=

ffiffiffiffiffiffiffi
�a
p

in
Eq. (14),

~R ¼ zþ
�
~R0 � z

	
22 (18)

Fig. 1(b) together with Eqs. (14)–(18) may be used to evaluate the
critical Rayleigh number and wavenumbers in terms of the
frequency U, the parameters ðkFrÞ and g. We evaluated the char-
acteristic Rayleigh number versus the frequency for selected values
of a as follows. For a selected value of 2 we evaluated ~R using Eq.
(18) and the value for q/2 using Eq. (15). Then Fig. 1(b) was used to
find the corresponding value of 2=

ffiffiffiffiffiffiffi
�a
p

and then the frequency was
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Fig. 2. Comparison of the present results with those of [7]. (a) Frequency against vib
calculated from Eq. (14). The critical Rayleigh number Rcr is then
obtained by minimizing Rc over a.

4. Results and discussion

The effect of gravity modulation on the onset of buoyancy
convection in a fluid saturated anisotropic porous medium is
studied using Brinkman’s equation. Based on the previous works
and available data we considered Da in the range 10�4�Da� 10�1

and x and h in the range 10�1 � x;h � 10. Following [8] we fixed
ðkFrÞ ¼ Oð10�5Þ corresponding to the solidification of binary liquid
metals and g¼O(3). We observed that that the stability charac-
teristics remain unaffected for sufficiently higher frequencies
consistent with earlier results available [6,10].

Before proceeding further it is of interest to compare the results
corresponding to an isotropic porous medium of Darcian nature
(Da / 0, x ¼ h ¼ 1), a particular case of the present problem, with
b
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4
[7]
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rational Rayleigh number, (b) wavenumber against vibrational Rayleigh number.
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the existing results. In the unmodulated limit U/0, the critical
Rayleigh number Rcr and critical wavenumber acr approach the
values 3.9272p2 and 1 against the known exact values 4p2 and 1
(see [8,9]) respectively. In the presence of modulation the transition
frequency separating the synchronous and subharmonic modes
occurs at U ¼ 1219:3548 against Uy1225 of [8,9]. Fig. 2 exhibits
a comparison with the limiting case AL/N, corresponding to an
infinite horizontal layer, of Barden and Mojtabi [7] for different
values of their vibrational Rayleigh number Rv which is propor-
tional to b2

* . We observe that the agreement between the two
results is qualitatively correct but yet in the case of frequency it is
quantitatively approximate which may be anticipated due to the
time-averaging procedure employed in [7]. We however note that
sufficiently higher values of Rv result in larger modulation ampli-
tudes and hence the validity of the time-averaging method
becomes questionable.

The characteristic Rayleigh number Rc is plotted against the
frequency U for various values of Da when a ¼ 1:0 and is shown
in Fig. 3(a). It corresponds to the case of an isotropic porous
medium ðx ¼ h ¼ 1Þ. It is noted that the region below the curves
is stable and the region above them is unstable for both
synchronous and subharmonic modes. It is noted that the
synchronous mode is much affected by changes in the values of
Da compared to the subharmonic one. The critical Rayleigh
number ~Rcr and critical wavenumber acr against frequency U are
plotted in Fig. 3(b) and (c) for different values of Da. We note that
the limit U/0 corresponds to the unmodulated case, i.e.,
a porous medium subjected to a constant gravitational field. It is
clear that the vibration frequency inhibits the onset of convection
in the region of synchronous response whereas augments it in
the region of subharmonic response for all values of Da. In the
synchronous mode, the inhibition is weak for lower frequencies
and becomes strong for higher frequencies until U reaches
a transition value beyond which subharmonic mode becomes
critical. The transitions occur at U ¼ 1225; 1150 and 780 for
Da ¼ 10�4; 10�2and 10�1 respectively, i.e., the transition point
gets shifted to lower frequencies as the porous medium becomes
sparse. ~Rcr decreases in the region of subharmonic response and
becomes invariant for sufficiently large values of U. The corresponding
acr decreases for the synchronous mode and increases for the sub-
harmonic mode with a sudden change in it at the point of transition as
the vibration frequency is increased. This shows that the heat transfer
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characteristics near the point of transition can be well controlled by
a suitable choice of Da. Also we observe that ~Rcr decreases drastically
and the convection cells are suppressed as Da/0 consistent with the
physical reasoning.

Fig. 4 shows the stability characteristics against the vibration
frequency U for various values of x when Da ¼ 10�1. ~Rcr plotted
against U in Fig. 4(b) shows that that eventhough an increase in x

reduces Rc in both synchronous and subharmonic modes its effect is
prominent only in the synchronous mode. The synchronous mode
of instability changes to the subharmonic one when U becomes
433, 780 and 1045 respectively for x ¼0.1, 1 and 10. Thus x shifts
the transition point to a higher frequency region. The correspond-
ing acr plotted against U in Fig. 4(c) shows strengthening of the
circulation patterns for an increase in x. Moreover we observe that
the critical wavenumber decreases with increasing frequencies for
the synchronous mode and increases for the subharmonic mode.
The jump in acr near the point of transition is found to be a strong
function of x. Similarly the stability characteristics for various
values of h when Da ¼ 10�1 is displayed in Fig. 5. It is evident from
Fig. 5(a) that when h increases, Rc also increases for both
synchronous and subharmonic modes, favouring the quiescent
base state. The critical Rayleigh number ~Rcr and critical wave-
number acr against frequency U are shown in Fig. 5(b) and (c) for
different values of h. The effect of h is found to stabilize the diffusive
solution and delay the onset of convection. We see that anisotropy
in conductivity affects the subharmonic mode as well significantly
compared to that in permeability. The transition between the two
destabilizing modes occurs at U ¼ 802;780 and 632 for
h ¼ 0:1; 1 and 10 respectively. We observe that the amplitude of
the disturbance pattern is reduced considerably with increasing h

for both synchronous and subharmonic solutions.

5. Conclusion

We investigated the effect of gravity modulation on the onset of
buoyancy driven convection in a horizontal porous layer. The
porous medium was assumed to be anisotropic and governed by
Brinkman’s equation. It leads to the following conclusions. The
instability mode changes from synchronous to subharmonic as the
vibration frequency increases to a certain level. The synchronous
mode is affected much by the non-Darcian effects as well as
anisotropies of the porous matrix. The mechanical and thermal
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anisotropies produce opposite effects on the onset of motion and its
secondary characteristics. The transitional frequency gets shifted to
a lower frequency range when either the medium becomes sparse
or the thermal anisotropy parameter becomes large and to a higher
frequency range when the mechanical anisotropy parameter
becomes large.
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